

基于射频边缘滤波的多普勒测风激光雷达

吴柯南^{1,2}, 胡佳栋¹, 夏海云^{1,2*}, 魏天问^{1**}, 裘家伟¹ ¹南京信息工程大学大气物理学院, 江苏南京 210044; ²中国科学技术大学地球和空间科学学院, 安徽 合肥 230026

摘要 在相干多普勒测风激光雷达(CDWL)中引入直接探测多普勒测风激光雷达(DDWL)常用的边缘技术进行实时数据处理,此边缘技术基于射频边缘滤波器实现,无需进行激光源频繁校准和精确频率锁定。这种混合 CDWL结合了 DDWL和 CDWL的优点,在实现相干探测的同时避免了复杂的计算。在对比实验中,混合 CDWL与传统 CDWL的探测 结果在2 km 以内的较短距离上显示出良好的一致性,但在更长的距离上测量结果有很大的不确定性。后续可以通过提 高激光功率、扩大望远镜观测面积或提升其灵敏度来提升所提方法的性能。

关键词 激光雷达;大气光学;气溶胶探测;光电子学中图分类号 O436 文献标志码 A

相干多普勒测风激光雷达(CDWL)经过几十年 的发展,已被广泛应用于大气遥感领域,如探测降 水^[1]、大气边界层^[2]、重力波^[3]、闪电^[4]、湍流^[5]、飞机尾 流^[6]等。高分辨率的CDWL有助于揭示微尺度大气 运动的机理。随着硬件的改善和脉冲编码技术的引 人,光纤激光器的峰值功率^[7]和重复频率^[8]明显提 升,分别达到了 30 m/s和1.8 m/s的空间分辨率。一 些常用于光通信和雷达的复杂技术,如互相关^[940]、相 位编码^[11]和调频^[12]技术,也被用来实现高空间分辨 率。然而,这些高分辨率激光雷达都需要额外的解码 计算。

为了避免复杂的计算,本文提出一种基于射频边 缘滤波的多普勒频移估计方法。该方法来源于直接探 测多普勒测风激光雷达(DDWL)。在DDWL中,通过 使用Fabry-Perot干涉仪、Fizeau干涉仪和碘分子吸收 池^[13-17]等窄带滤波器,将多普勒频移转换为信号强度 变化^[18],这种方法被称为边缘技术法。但是复杂的光 学滤波器很容易受到环境干扰,需要对激光进行频繁 校准和精确频率锁定^[19-20]。本文使用射频边缘滤波器 实现边缘技术,这种滤波器简单稳定,无需频繁校准。 由于CDWL中的声光调制器(AOM)引入的射频频移 是精确的,其精度可达kHz量级,射频边缘滤波器在使 用时也没有精确频率锁定的需求。

激光雷达结构如图1所示。在收发系统中,连续 种子光被分为两束:一束被用作本振(LO)光;另一束 被 AOM 斩 波 和 频 移,随后 被 掺 铒 光 纤 放 大 器

快

DOI: 10.3788/AOS241037

报

(EDFA; PFL-1550)放大,通过环形器后,从望远镜出 射到大气中。

大气后向散射信号通过望远镜耦合到环形器中, 并通过50:50混频器与LO光混合,然后在平衡探测器 (BD)上转换为电信号。电信号经低噪声功率放大器 (LNA)放大后,被50~110 MHz的带通滤波器(BPF) 滤波,以抑制噪声。功率分配器1(PS₁)将滤波后的信 号均分成两路:一路送入Ch₀通道,由一个250 MSa/s 的高速模数转换器(ADC)进行采样,实现传统的 CDWL;另一路由功率比为1:2的功率分配器2(PS₂) 分成参考信号和边缘滤波信号,通过边缘滤波器获得

图1 激光雷达系统结构图

Fig. 1 System setup of the lidar

收稿日期: 2024-05-17;修回日期: 2024-06-18;录用日期: 2024-07-15;网络首发日期: 2024-07-17

基金项目:中国科学院战略性先导科技专项(XDA22040601)、南京信息工程大学人才启动经费(1521132201006)

通信作者: *hsia@ustc.edu.cn; **003628@nuist.edu.cn

快 报

射频信号的频率。考虑到动态范围和鉴频灵敏度,将 由 18 pF 电容和 50 Ω 电阻组成的一阶高通滤波器作为 射频边缘滤波器。参考信号和边缘滤波信号分别通过 模拟乘法器(AD835)进行平方运算,随后经过低通滤 波器(LPF; 25 MHz),分别用 50 MSa/s的低速 ADC 进行采样。激光雷达的关键参数列于表1。

表1 激光雷达的关键参数 Table 1 Key parameters of the lidar

rabie i filoj parametero or une nau			
Device	Parameter	Value	
	Wavelength /nm	1550	
	Pulse duration /ns	200	
Laser	Pulse energy $/\mu J$	80	
	Pulse repetition rate /kHz	10	
	LO power /mW	0.8	
	Aperture /mm	100	
Telescope	Focal length /mm	550	
	LMAF mode-field diameter $/\mu m$	25	
	BD bandwidth /MHz	220	
	BPF bandwidth /MHz	50-110	
	BPF insertion loss /dB	1	
Dessions	BPF stop band suppression $/dB$	60	
Receiver	Power spliter 1	1:1	
	Power spliter 2	1:2	
	Sampling rate of $Ch_0 / (MSa \cdot s^{-1})$	250	
	Sampling rate of $\mathrm{Ch}_{\scriptscriptstyle 1/2}/(\mathrm{MSa}{\hspace{0.3mm}}{\hspace{0mm}}{\hspace{0mmm}}{\hspace{0mmm}}{\hspace{0mm}}}{\hspace{0mmm}}{\hspace{0mmm}}{\hspace{0mmm}}{\hspace{0mm}}{\hspace{0mm}}{\hspace{0mmm}}{\hspace{0mm}}{m$	50	

图 1 中,平衡探测器光电转换得到的电流可以表示为信号电流和噪声电流之和^[21]:

$$i(t) = i_{s}(t) + i_{n}(t),$$
 (1)

 $i_{\rm s}(t) = 2R_{\rm d} \left[\eta_{\rm h} P_{\rm LO} P_{\rm s}(t) \right]^{0.5} \cos\left(2\pi f t + \varphi\right), \quad (2)$

式中: i_s 为信号电流; i_n 为噪声电流; R_d 为探测器响应 度; η_h 为外差效率; P_{LO} 为LO光功率; $P_s(t)$ 为随距离*z* 变化的回波信号功率,*z*由t = 2z/c得到; $f \pi \varphi$ 分别为 中频(IF)信号的频率和相位。

在传统的基于快速傅里叶变换(FFT)方法中,数

第 44 卷 第 18 期/2024 年 9 月/光学学报

字化的 IF 信号首先被一个窗口函数 $w(t-t_0)$ 截断,其 宽度通常等于距离门的长度(t_0 为距离门的中心)。功 率谱密度(PSD)为

$$S(f,z_0) = \left| \mathcal{F}[i(t) \cdot w(t-t_0)] \right|^2, \qquad (3)$$

式中: *F*(•)为FFT函数。在脉冲累积后,通过搜索 信号峰在频域中的位置,可以得到多普勒速度。

在所提方法中,与参考通道Ch₁相比,Ch₂中使用 边缘滤波器作为鉴频器,产生一个功率与频率有关的 信号。随后,利用两个通道的信号功率比来估算多普 勒频移。为了避免耗时的FFT操作,本文方法利用 Parseval定理,直接从时域估计信号功率,这相当于传 统的CDWL在频域上的积分。

根据式(1)和(2),信号电流的均方可以表示为 $\langle i_{s}^{2}(t) \rangle = \langle i^{2}(t) \rangle - \langle i_{n}^{2}(t) \rangle = 2R_{d}^{2}\eta_{h}P_{LO}P_{s}(t) \times$ $\left[1 + \langle \cos(2\pi \cdot 2ft + 2\varphi) \rangle\right],$ (4)

式中:〈•〉为均值运算。通过在模拟乘法器之后使用一 个低通滤波器滤除 IF 分量,可以消除式(4)中的余弦 函数项对信号功率估算的影响。带宽由时间窗长度决 定,即空间分辨率。噪声〈i²_n(t)〉包括光学噪声和电子 学噪声,其中本振光的散粒噪声占主导。实际的处理 过程中,利用远场信号数据进行估计,此时大气后向散 射的强度可以忽略不计。

本文方法需要获取边缘滤波器的系统响应函数 R(f),它是由边缘滤波器的频率传输函数H(f)和信 号的频谱形状共同决定的。使用发射激光脉冲的频谱 来近似气溶胶回波的信号频谱。考虑到激光脉冲的光 谱展宽,边缘滤波器对大气后向散射的系统响应函数 近似为

$$R(f_{\rm c}) = \frac{\int S_{\rm L}(f - f_{\rm c})H(f)df}{\int S_{\rm L}(f - f_{\rm c})df} = H(f) \otimes S_{\rm L}(f), (5)$$

式中:*S*_L(*f*)为归一化光谱;*f*_c为多普勒频移信号的中心频率;⊗表示卷积运算。

为了校准H(f),在两个模拟乘法器之前进行高 速采样(250 MSa/s)。Ch₁和Ch₂在图 1中A点和B点 的PSD^[22]分别为

$\int S_{Ch_{1}}(f,f_{c},z_{0}) = \left[I_{s}(f,f_{c},z_{0}) + I_{n}(f) \right] \otimes W(f)$	(c)
$\Big S_{\mathrm{Ch}_{\mathrm{s}}}(f,f_{\mathrm{c}},z_{0}) = \Big\{ \Big[I_{\mathrm{s}}(f,f_{\mathrm{c}},z_{0}) + I_{\mathrm{n}}(f) \Big] \cdot H(f) \Big\} \otimes W(f)'$	(0)

式中:*I*_s为窄带大气后向散射谱;*I*_n为频率无关的噪声 谱;*W*(*f*)为窗口函数的频谱。需要注意的是,真实的 *I*_s(*f*)会受到湍流、风切变、降水等天气现象的影响^[1]。

图 2 所示为空间分辨率为 30 m 的 Ch₁和 Ch₂的真 实 PSD 结果。受到 W(f)的影响,估算出的频谱会宽 于真实频谱。窗函数的增宽效应与时域数据长度成反 比。为了降低窗函数的影响,准确估计 H(f),选择时 域回波 $\langle i_s^2(t) \rangle$ 的最末端 2 µs 长度的数据来计算频谱, 其中大气后向散射可以忽略不计。由于时间窗足够 长,W(f)在式(6)可以近似为一个Dirac 函数,由此计 算出:

$$H(f) = S_{\mathrm{Ch}_2}(f) / S_{\mathrm{Ch}_1}(f)_{\circ}$$

$$\tag{7}$$

计算出的H(f)和R(f)结果分别如图3的虚线 和实线所示。从H(f)到R(f)的变化并不明显,这是

图 2 利用 30 m 的距离门长度计算出的 Ch₁和 Ch₂的功率谱密 度。(a) Ch₁;(b) Ch₂

Fig. 2 Calculated power spectrum density of Ch₁ and Ch₂ using 30 m range gate length. (a) Ch₁; (b) Ch₂

Fig. 3 Response function of the system

因为光谱宽度(约2MHz)比边缘滤波器的工作带宽要 窄得多。

虽然边缘滤波的方法会损失信噪比,但是其计算 复杂度低,在低功耗系统中具有较大的优势。FFT的 时间复杂度为O(Nlog N),其中N为一个距离门内的 数据长度。例如,当N=512时,在补零填充之后,大约 需要进行1000次乘法和2000次加法运算。相比之下, 本文方法只需要进行5次加法运算(采样率为 50 MSa/s时,一个距离门内只需要5个采样点)。此 外,根据Nyquist-Shannon采样定理,基于FFT的方法 要求 ADC的采样率至少为待测信号最高频率的2倍。 在传统的CDWL系统中,80 MHz的中心频移和 30 MHz的动态范围会导致最高110 MHz的待测信号 频率。因此,Ch。使用250 MSa/s的ADC;本文方法 只需使用50 MSa/s的低速ADC,这有利于系统的 集成。

为了验证本文方法,在南京信息工程大学 (32°12′08″N,118°42′59″E)进行了对比实验。此实验 中,激光雷达凝视方向为水平方向,空间分辨率为 30m,累积时间为2s。Ch。通道使用传统的基于FFT 的方法,用作对比。在大气能见度约为10km的微风 第 44 卷 第 18 期/2024 年 9 月/光学学报

条件下,2022年11月23日10时50分的实验结果如 图4所示。时域内的原始强度信号如图4(a)所示,在 扣除激光雷达后向散射信号末端估计的噪声功率后, 计算出强度信号,如点划线、实线所示。根据式(5), 计算Ch₂与Ch₁之间信号强度的比值,如图4(b)所示。 将信号强度比值直接转换为多普勒频移,计算水平风 廓线,如图4(c)所示,这两种方法之间的速度差(Δv) 如下方嵌图所示。在距离<1km时,速度差<0.2 m/s, 但在距离>2 km时,信号强度过低,采样过程中量化 误差的影响逐渐显现,导致结果波动较大。

- 图4 微风条件下的结果。(a) 2022年11月23日10时50分的 Ch₁和Ch₂的信号强度;(b)Ch₂与Ch₁的信号强度比值;
 (c)累积时间为2s时激光雷达的径向风廓线,下方为两 种方法的速度差
- Fig. 4 Results under small wind condition. (a) Signal intensity of Ch₁ and Ch₂ at 10:50 on November 23, 2022; (b) ratio of signal intensity between Ch₁ and Ch₂; (c) radial wind velocity profiles of the proposed lidar when accumulated time is 2 s, and the velocity difference is also plotted in the below panel

在强风条件下测试了本文方法在不同时间分辨率 下的性能。此时,望远镜的仰角向上抬升15°,大气能 见度约为4.5 km。强度信号及其比值分别如图5(a)、 (b)所示。在图5(c)~(e)中,风廓线的累积时间从2 s 减少到0.1 s。显然,风速差值随着累积时间的减少 而增加。当累积时间为0.1 s时,2 km内的速度差小 于±1 m/s。此外,和图4(c)相比,图5(c)中能见度降 低,大气后向散射增强,有效探测距离明显延长。

总之,本文提出并展示了一种基于射频边缘滤波器的实时数据处理CDWL。所提方法将射频信号分为两路,通过边缘滤波器和低速采样即可实现多普勒频移的实时估计。在边缘技术中,误差由信噪比与检

- 图 5 强风条件下的结果。(a) 2022年11月29日15时48分的 Ch₁和Ch₂的信号强度;(b) Ch₂与Ch₁的信号强度比值;累 积时间为(c) 2 s、(d) 0.5 s和(e) 0.1 s时激光雷达的径向 风廓线,下方嵌图为两种方法的速度差
- Fig. 5 Results under strong wind condition. (a) Signal intensity of Ch₁ and Ch₂ at 15:48 on November 29, 2022; (b) ratio of signal intensity between Ch₁ and Ch₂; radial wind velocity profiles of the proposed lidar when accumulated time is (c) 2 s, (d) 0.5 s, and (e) 0.1 s, and the velocity differences also plotted in the below panels

测灵敏度的比值决定^[13]。因此,后续可以通过提高激 光功率、扩大望远镜面积或提升其灵敏度来提升所提 方法的性能。此外,还可以通过双边缘技术^[23],使用两 条有相反斜率的对称边缘测量信号频率,提高探测 精度。

参考文献

- Wei T W, Xia H Y, Yue B, et al. Remote sensing of raindrop size distribution using the coherent Doppler lidar[J]. Optics Express, 2021, 29(11): 17246-17257.
- [2] Wang L, Yuan J L, Xia H Y, et al. Marine mixed layer height detection using ship-borne coherent Doppler wind lidar based on constant turbulence threshold[J]. Remote Sensing, 2022, 14 (3): 745.
- [3] Jia M J, Yuan J L, Wang C, et al. Long-lived high-frequency

第 44 卷 第 18 期/2024 年 9 月/光学学报

gravity waves in the atmospheric boundary layer: observations and simulations[J]. Atmospheric Chemistry and Physics, 2019, 19(24): 15431-15446.

- [4] Wu K N, Wei T W, Yuan J L, et al. Thundercloud structures detected and analyzed based on coherent Doppler wind lidar[J]. Atmospheric Measurement Techniques, 2023, 16(23): 5811-5825.
- [5] Sathe A, Mann J. A review of turbulence measurements using ground-based wind lidars[J]. Atmospheric Measurement Techniques, 2013, 6(11): 3147-3167.
- [6] 张容川,王筱晔,张洪玮,等.多普勒激光雷达近地面飞机尾 涡反演方法优化[J]. 红外与激光工程,2023,52(11):20230160. Zhang R C, Wang X Y, Zhang H W, et al. Optimization of aircraft wake vortex inversion algorithm near ground based on Doppler lidar[J]. Infrared and Laser Engineering, 2023, 52(11): 20230160.
- [7] Liang C, Wang C, Xue X H, et al. Meter-scale and sub-secondresolution coherent Doppler wind LIDAR and hyperfine wind observation[J]. Optics Letters, 2022, 47(13): 3179-3182.
- [8] Zhang Y P, Yuan J L, Wu Y B, et al. Sub-meter wind detection with pulsed coherent Doppler lidar[J]. Physical Review Fluids, 2023, 8(2): L022701.
- [9] Dong D B, Yang S Z, Weng N Q, et al. Analysis of observation performance of a mobile coherent Doppler wind lidar using DBS scanning mode[J]. Journal of Physics: Conference Series, 2021, 1739(1): 012048.
- [10] Zhang Y P, Wu Y B, Xia H Y. High resolution coherent Doppler wind lidar incorporating phase-shift keying[J]. Journal of Lightwave Technology, 2022, 40(22): 7471-7478.
- [11] Zhang Y P, Wu Y B, Xia H Y. Spatial resolution enhancement of coherent Doppler lidar by pseudo-random phase coding[J]. Journal of Lightwave Technology, 2022, 40(13): 4467-4473.
- [12] Xu H, Li J B. Performance analysis of dual-frequency lidar in the detection of the complex wind field[J]. Optics Express, 2021, 29(15): 23524-23539.
- [13] Xia H Y, Sun D S, Yang Y H, et al. Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation[J]. Applied Optics, 2007, 46(29): 7120-7131.
- [14] Witschas B, Lemmerz C, Geiß A, et al. Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic Region and in the tropics[J]. Atmospheric Measurement Techniques, 2022, 15 (23): 7049-7070.
- [15] Lux O, Lemmerz C, Weiler F, et al. Intercomparison of wind observations from the European Space Agency's Aeolus satellite mission and the ALADIN Airborne Demonstrator[J]. Atmospheric Measurement Techniques, 2020, 13(4): 2075-2097.
- [16] Ishii S, Kishibuchi K, Takenaka H, et al. 355-nm directdetection Doppler wind lidar for vertical atmospheric motion measurement[J]. Applied Optics, 2022, 61(27): 7925-7936.
- [17] 谭智强, 卜令兵, 杨彬. 基于碘分子吸收池的新型瑞利多普勒 激光雷达[J]. 光学学报, 2023, 43(24): 2428001.
 Tan Z Q, Bu L B, Yang B. New Rayleigh Doppler lidar based on iodine molecular absorption cell[J]. Acta Optica Sinica, 2023, 43(24): 2428001.
- [18] Herbst J, Vrancken P. Design of a monolithic Michelson interferometer for fringe imaging in a near-field, UV, directdetection Doppler wind lidar[J]. Applied Optics, 2016, 55(25): 6910-6929.
- [19] Xia H Y, Dou X K, Sun D S, et al. Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method[J]. Optics Express, 2012, 20(14): 15286-15300.
- [20] McKay J A. Modeling of direct detection Doppler wind lidar. I. The edge technique[J]. Applied Optics, 1998, 37(27): 6480-

6486.

报

resolution lidar[J]. Applied Optics, 2017, 56(29): 8121-8134.

- [21] Fujii T, Fukuchi T. Laser remote sensing[M]. Boca Raton: CRC Press, 2005: 912.
- [22] Chouza F, Witschas B, Reitebuch O. Heterodyne high-spectral-
- [23] Korb C L, Gentry B M, Li S X, et al. Theory of the doubleedge technique for Doppler lidar wind measurement[J]. Applied Optics, 1998, 37(15): 3097-3104.

Doppler Wind Lidar Adopting Radio-Frequency Edge Discriminator

Wu Kenan^{1,2}, Hu Jiadong¹, Xia Haiyun^{1,2*}, Wei Tianwen^{1**}, Qiu Jiawei¹

¹School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;

²School of Earth and Space Science, University of Science and Technology of China, Hefei 230026, Anhui, China

Abstract

Objective Coherent Doppler wind lidar (CDWL) requires real-time signal processing with high computational complexity, which hinders the development of portable systems with high spatiotemporal resolution and long detection ranges. Despite successful implementations in various fields, high sampling rate analog-to-digital converters (ADCs) and real-time signal processing with digital signal processing (DSP) or graphics cards pose challenges for subsequent data storage and processing.

Methods We propose a Doppler shift estimation method using a real-time radio frequency (RF) discriminator in CDWL. Inspired by the direct detection Doppler wind lidar (DDWL), this method converts the returned laser signal into easily processed electrical signals through a balanced detector. Subsequently, a low-complexity frequency extraction is achieved using an RF edge discriminator.

Results and Discussions In the demonstration experiment, the comparison results between the proposed CDWL and the conventional CDWL show good consistency under both weak and strong wind conditions. Specifically, under strong wind conditions, a radial wind velocity difference of less than $\pm 1 \text{ m/s}$ is achieved within a range of 2 km, with a spatiotemporal resolution of 30 m and 0.1 s.

Conclusions By combining the advantages of CDWL and the edge technology DDWL, we propose and demonstrate a real-time data processing CDWL based on an RF edge discriminator. The results of the comparative experiments verify the feasibility and effectiveness of the new method.

Key words lidar; atmospheric optics; aerosol detection; optoelectronics