

基于单比特采样的相干多普勒测风激光雷达

吴柯南^{1,2},胡佳栋^{1*},夏海云^{1,2**},裘家伟¹,袁金龙¹,魏天问¹ ¹南京信息工程大学大气物理学院,江苏南京 210044; ²中国科学技术大学地球和空间科学学院,安徽 合肥 230026

摘要 相干多普勒测风激光雷达(CDWL)在大气探测中被广泛应用,但传统的CDWL因多比特采样导致原始采样数据 难以保存。提出了一种基于单比特采样的CDWL方案,利用时间交织采样技术,等效构建高速单比特模数转换器,有效 降低原始采样数据存储的难度,同时降低计算复杂度和功耗。通过连续观测实验对比单比特和多比特采样的CDWL的 功率谱特征值,风速差异的均值在0.08 m/s以内,其标准差在0.86 m/s以内。实验结果表明,单比特采样可以保持 CDWL的性能,同时有效地减少原始数据量,展示了其在CDWL应用中的潜力。

关键词 激光雷达;大气光学;气溶胶探测;光电子学中图分类号 O436 文献标志码 A

气溶胶是大气中由固体或液体颗粒组成的胶体系统,它改变了云和大气密度的辐射平衡^[1],也在云和降水的形成中起着重要作用^[2]。近年来,各种具有高时空分辨率的激光雷达系统已被广泛应用于大气^[34]及海洋^[5]等遥感领域。全光纤结构的相干多普勒风激光雷达(CDWL)使用窄光谱的气溶胶后向散射信号来提供返回信号的全部光谱信息^[6]。然而,对传统CDWL而言,实时捕获大气运动中的细节信息仍然是一个巨大的挑战,而且传统CDWL在大气探测中的原始采样数据量太大,难以直接保存,因此大气参数的反演通常是基于相干累加后的功率谱进行的。与原始采样数据相比,功率谱存在信息损失,但CDWL仍旧在降水、湍流、边界层高度、空气污染、重力波、大气退偏比和粒子组成等领域中做出了显著贡献^[7-11]。

后向散射信号的采样和量化是大气遥感的关键步骤^[12]。量化是将信号的连续取值近似为离散值。极限的量化形式是每个采样数据仅为一个比特(0或1),这是通过重复比较信号是否高于或低于参考电平来完成的^[13]。单比特量化与数据采样一起形成了单比特采样,这能以较低的成本获得较高的采样率。单比特采样可以显著减少数据量,从而保留原始数据以提取更多细节信息,因此单比特采样CDWL有望发展为大气 探测的一种新仪器。

目前,单比特采样技术已被应用于雷达探测。例如,在数字阵列雷达系统中,单比特采样并不一定会导致波束形成性能下降,特别是在低载噪比(CNR;*R*_{cN})

DOI: 10.3788/AOS241002

时^[14]。在超宽带雷达系统中,采用单比特采样技术进行雷达回波复原,显著降低了计算成本^[15]。在合成孔径雷达中,采用单比特采样能够线性保持振幅信息^[16], 有效抑制低数控条件下的伪影,提高成像质量^[17]。

为了验证基于单比特采样的CDWL的可行性,搭 建了一套混合CDWL系统,如图1所示。在光路收发 系统中,中心波长为1548 nm的连续种子光被分成两 束,一束被用作本振光(LO),另一束被声光调制器调 制成中心频移为80 MHz、重复频率为10 kHz的激光 脉冲。放大后的激光脉冲能量为100 uJ,脉冲持续时 间为200 ns。在接收系统中,使用一个50:50的分光 器将接收到的光信号与LO混合,并通过一个平衡光 电探测器将光信号转换为电信号。随后将电信号等比 分成两束,并分别输入到两个采样通道中。通道1 (CH1)等效地构造了一个单比特模数转换器(ADC), 它使用一个比较器(TLV3604)来执行单比特量化,然 后使用触发器(FF)在现场可编程门阵列(FPGA, XC7K325T-2FFG900I)中进行单比特采样。通道2 (CH 2)采用 14 bit 高分辨率 ADC(AD9680) 进行信号 采样。在0~2.5 km、2.5~5.5 km、5.5~14.5 km的探测 距离内,径向空间分辨率分别设置为30、60、150m。 表1列举了CDWL系统的关键参数。

在 CH 2 中, 14 bit ADC 实现了高速、高分辨率的 信号采样,但面临着电路设计复杂、功耗大和硬件成本 高等挑战。与需要完整地实现采样、量化和编码过程 的多比特 ADC 相比,单比特 ADC 不需要编码过程,并

收稿日期: 2024-05-13; 修回日期: 2024-06-20; 录用日期: 2024-07-08; 网络首发日期: 2024-07-17

基金项目:中国科学院战略性先导科技专项(XDA22040601)、南京信息工程大学人才启动经费项目(1511132101014)

通信作者: *hujd0707@nuist.edu.cn; **hsia@ustc.edu.cn

快 报

表1 混合 CDWL 的关键参数 Table 1 Key parameters of the hybrid CDWI

Table 1 Rey parameters of the hybrid CD w L			
Parameter	Value		
Wavelength /nm	1548		
Pulse energy /µJ	100		
Pulse duration /ns	200		
Pulse repetition frequency /kHz	10		
Diameter of telescope /mm	80		
Temporal resolution /s	1		
Spatial resolution /m	30		
Sampling rate /(MSa/s)	500		
Maximum range /km	15		

允许采样和量化顺序交换。基于这一优势,设计了 一个先量化后采样的单比特 ADC^[18]。首先,使用比 较器来量化信号,然后使用 FPGA 内部的 FF 对信 号进行采样。由此,可以用一个更简单的电路有效 地构造单比特 ADC,如图 2 所示,其中还包括延迟 单元(DU)。

第 44 卷 第 16 期/2024 年 8 月/光学学报

由于存在技术和成本的限制,FPGA内的触发器 对CDWL所要求的高频信号进行采样具有挑战性。 为了解决这个问题,在FPGA中构建了一个时间交织 采样结构。DU可以使量化信号延迟半个采样周期。 通过两个FF通道同时对延迟前后的量化信号进行采 样,可以有效提高采样率。通过增加DU和FF通道的 数量,可以让单比特ADC实现更高的采样率。

如表2所示,与CH2相比,CH1的数据量减少到 1/16。值得注意的是,虽然CH2使用14 bit ADC进行 采样,但实际的数据传输和存储单位是8 bit,所以它的 数据量与16 bit ADC相同。此外,与CH2相比,CH1 中的采样电路的功耗从3.60 W降低到0.08 W。这说 明单比特采样在降低数据量和功耗方面具有显著 优势。

表2 采样电路的数据量和功率

Table 2	Data amount	and	power	of	sampling	circuit
---------	-------------	-----	-------	----	----------	---------

Channel	Data rate /(Gbit/s)	Power consumption / W
CH 1	0.5	0.08
CH 2	8	3.60

仿真了两通道在近场 ($R_{cN}\approx 0$) 和远场 ($R_{cN}\approx$ - 35 dB) 气溶胶信号的探测表现。气溶胶信号由中心频率为 80 MHz、标准差为 2 MHz 的弱正弦信号组成。采用 500 MSa/s 的 ADC 采样,然后进行 512 点快速傅里叶变换。单比特 ADC 的阈值为噪声均值。统计 1000 次仿真结果并计算平均,结果如表 3 所示。在近场中,CH1的 CNR 比 CH 2 约小 3.85 dB;在远场中,CNR 约降低了 1 dB,即 CNR 越小,CNR 的差值 ($\Delta R_{cN} = R_{cN,CH2} - R_{cN,CH1}$)越小。这与文献[17, 19-20]中的结论一致。CH 1 和 CH 2 仿真得到的径向风速、 谱宽和偏度是一致的。这表明了在 CDWL 中使用单比特采样具有可行性。

表3 混合 CDWL 系统功率谱特征参数的仿真结果 Table 2 Simulated abarentspirities of the power greatering of t

1 able 5	Simulated characteristics of the power spectrum of the
	hybrid CDWL system

	5	ţ		
	CH 1		CH 2	
Parameter	Near- field	Far- field	Near- field	Far- field
CNR /dB	-3.830	-35.168	0.020	-34.206
Radial wind velocity /(m/s)	-0.017	0.278	0.013	0.634
Spectrum width $/MHz$	5.410	3.493	5.373	3.585
Spectrum skewness	0.003	0.009	0.002	0.013

在南京信息工程大学校园(32.205°N,118.722°E) 内对水平大气气溶胶进行了连续观测(2024年1月8 日10:00-24:00)。CDWL被安装在一个30 m高的

快 报

第 44 卷 第 16 期/2024 年 8 月/光学学报

建筑物屋顶,凝视方向仰角为5°,以避开其他建筑物获 得良好的视野。实验结果如图3所示。

图 3(a)和 3(b)分别为 CH 1 和 CH 2 的 CNR 结 果。在图 3(b)中,黑线表示有效探测气溶胶的最远 距离。黑线上方的强信号为云信号。此信号逐渐 下降,在 16:00-20:00 期间,与气溶胶信号重叠。 从图 3(c)~(f)可以明显看出这种增强的混合信 号。图 3(c)和(d)是径向风速的观测结果。可以 看出单比特采样也能够探测到大气风场的快速变 化。图 3(e)~(h)在频谱宽度和偏度上表现出良 好的一致性,两者都与仿真结果很好地吻合。特别 是在 13:00-15:00 期间,光谱偏度明显增大,这表 明单比特采样 CDWL 也可以探测降水、雷暴和湍 流等。

图 3 混合 CDWL 系统的连续观测结果。(a)(c)(e)(g) CH 1 中 CNR、径向风速、光谱宽度和光谱偏度的观测结果;(b)(d)(f)(h) CH 2 中 CNR、径向风速、光谱宽度和光谱偏度的观测结果

Fig. 3 Continuous observation results by the hybrid CDWL system. (a)(c)(e)(g) Observation results of CNR, radial wind speed, spectrum width and spectrum skewness in CH 1; (b)(d)(f)(h) observation results of CNR, radial wind speed, spectrum width and spectrum skewness in CH 2

在对比实验中,CNR与径向风速的差异如图4所 示。图4(a)为近场(距离300m)处CH1和CH2的 CNR结果。在12:00—15:00期间,受湍流的影响, CNR有明显增强。近场CNR差的均值为3.28dB,标 准差为0.26dB。图4(b)为远场低CNR条件下CH1 和CH2的CNR结果,对应于图3(b)中的黑线。远场 CNR差的均值为1.35dB,标准差为0.78dB。近场和 远场的实验结果与仿真结果一致。

图 4(c)和图 4(d)分别代表了近场和远场处两通 道径向风速的变化。如图 4(c)所示,两个通道的速度 基本相同,当图 4(a)的 CNR 发生较大的波动时,对应 的径向风速差异也有轻微的变化。近场和远场径向风 速差的均值(ΔV=V_{CH2}-V_{CH1})分别为-0.08 m/s和 -0.07 m/s,标准差分别为0.57 m/s和0.86 m/s。

由仿真和实验的结果可知,在近场处,CNR较大, 信号波形相对较为明显,但在单比特采样下波形只会 被量化为二值信号,因而单比特采样在近场处的CNR 损失相对较大。尽管如此,近场处的风速反演结果不 受CNR损失的影响,故而不影响大气探测。在远场 处,CNR较小,导致风速的差值有所增大,但依旧在可 信的范围内。因此,单比特采样CDWL也可以被应用 于大气探测。

综上所述,本课题组提出了一种新的基于单比特 采样的CDWL方案。与传统CDWL相比,这种新的 CDWL将采样数据量降低到原始采样数据量的1/16, 并将采样电路功耗降低到原来的2/9。在对比实验 中,近场和远场CNR差的均值分别为3.28 dB和 1.35 dB,标准差分别为0.26 dB和0.78 dB,径向风速 差的均值分别为-0.08 m/s和-0.07 m/s,标准差分 别为0.57 m/s和0.86 m/s。实验结果与仿真结果相一 致,验证了此CDWL在大气探测中的有效性。

参考文献

- Li Z Q, Niu F, Fan J W, et al. Long-term impacts of aerosols on the vertical development of clouds and precipitation[J]. Nature Geoscience, 2011, 4: 888-894.
- [2] Fan J W, Rosenfeld D, Zhang Y W, et al. Substantial convection and precipitation enhancements by ultrafine aerosol particles[J]. Science, 2018, 359(6374): 411-418.

- 图4 对比实验结果。(a)(b)近场和远场处的 CNR 及 ΔR_{CN} ; (c)(d)近场和远场的径向风速及 ΔV ;(e)能见度
- Fig. 4 Comparison experiment results. (a)(b) CNR and $\Delta R_{\rm CN}$ in the near-field and far-field; (c)(d) radial wind velocity and ΔV in the near-field and far-field; (e) visibility
 - [3] Chu Y F, Wang Z E, Xue L L, et al. Characterizing warm atmospheric boundary layer over land by combining Raman and Doppler lidar measurements[J]. Optics Express, 2022, 30(7): 11892-11911.
 - [4] Yang Y J, Fan S H, Wang L L, et al. Diurnal evolution of the wintertime boundary layer in urban Beijing, China: insights from Doppler lidar and a 325-m meteorological tower[J]. Remote Sensing, 2020, 12(23): 3935.

第 44 卷 第 16 期/2024 年 8 月/光学学报

- [5] Shangguan M J, Weng Z W, Lin Z F, et al. Day and night continuous high-resolution shallow-water depth detection with single-photon underwater lidar[J]. Optics Express, 2023, 31 (26): 43950-43962.
- [6] Wei T W, Xia H Y, Wu Y B, et al. Inversion probability enhancement of all-fiber CDWL by noise modeling and robust fitting[J]. Optics Express, 2020, 28(20): 29662-29675.
- [7] Wu K N, Wei T W, Yuan J L, et al. Thundercloud structures detected and analyzed based on coherent Doppler wind lidar[J]. Atmospheric Measurement Techniques, 2023, 16(23): 5811-5825.
- [8] Jia M J, Yuan J L, Wang C, et al. Long-lived high-frequency gravity waves in the atmospheric boundary layer: observations and simulations[J]. Atmospheric Chemistry and Physics, 2019, 19(24): 15431-15446.
- [9] Yuan J L, Wu K N, Wei T W, et al. Cloud seeding evidenced by coherent Doppler wind lidar[J]. Remote Sensing, 2021, 13 (19): 3815.
- [10] Wei T W, Xia H Y, Wu K N, et al. Dark/bright band of a melting layer detected by coherent Doppler lidar and micro rain radar[J]. Optics Express, 2022, 30(3): 3654-3664.
- [11] Yuan J L, Xia H Y, Wei T W, et al. Identifying cloud, precipitation, windshear, and turbulence by deep analysis of the power spectrum of coherent Doppler wind lidar[J]. Optics Express, 2020, 28(25): 37406-37418.
- [12] Bauer-Marschallinger B, Cao S M, Navacchi C, et al. The normalised Sentinel-1 Global Backscatter Model, mapping Earth's land surface with C-band microwaves[J]. Scientific Data, 2021, 8(1): 277.
- [13] Gianelli C, Xu L Z, Li J, et al. One-Bit compressive sampling with time-varying thresholds for multiple sinusoids [C]//2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), December 10–13, 2017, Curacao. New York: IEEE Press, 2017.
- [14] Chen X Z, Huang L, Zhou H F, et al. Performance analysis of one-bit digital beamforming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 8235-8245.
- [15] Zhang T Y, Ren J Y, Li J, et al. Joint RFI mitigation and radar echo recovery for one-bit UWB radar[J]. Signal Processing, 2022, 193: 108409.
- [16] Park J, Lee N, Hong S N, et al. Learning from noisy labels for MIMO detection with one-bit ADCs[J]. IEEE Wireless Communications Letters, 2023, 12(3): 456-460.
- [17] Wei S M, Xu J, Tao X F, et al. Analytical solution of optimal symbol error rate for multilevel pulse-amplitude-modulated signals with one-bit quantization[J]. IEEE Communications Letters, 2023, 27(10): 2732-2736.
- [18] Hu J D, Shen Z T, Liu S B, et al. A field programmable gate array based high speed real-time weak periodic signal detection technique[J]. The Review of Scientific Instruments, 2021, 92 (2): 024703.
- [19] Ge S D, Feng D, Song S Q, et al. Sparse logistic regressionbased one-bit SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5217915.
- [20] Zhao B, Huang L, Bao W M. One-bit SAR imaging based on single-frequency thresholds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 7017-7032.

One-Bit Sampling Coherent Doppler Wind Lidar

Wu Kenan^{1,2}, Hu Jiadong^{1*}, Xia Haiyun^{1,2**}, Qiu Jiawei¹, Yuan Jinlong¹, Wei Tianwen¹

 $^1S chool \ of \ Atmospheric \ Physics, \ Nanjing \ University \ of \ Information \ Science \ and \ Technology, \ Nanjing \ 210044,$

Jiangsu, China;

²School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China

Abstract

Objective Aerosols play an important role in the formation of cloud and precipitation. Various lidar systems, distinguished by their high temporal and spatial resolution, are employed to investigate atmospheric properties. The raw data from traditional coherent Doppler wind lidar (CDWL) used in atmospheric detection is difficult to store due to its large volume, leading to the inversion of atmospheric parameters based on the coherently integrated power spectrum rather than raw data. However, the power spectrum loses information compared to the raw data. To make the sampled raw data easier to store, we need to reduce its size without significantly decreasing the CDWL performance.

Methods We propose a one-bit sampling CDWL for atmospheric detection, reducing the resolution of the analog-todigital converter (ADC) to the limit of one-bit, significantly reducing the size of sampling raw data volume and simplifying data storage. We employ comparators and a time-interleaved sampling structure to construct a one-bit sampling ADC with reduced computational complexity and power consumption.

Results and Discussions The experimental results of continuous observations from both the 1 bit and 14 bit sampling channels are shown in Fig. 3. One-bit sampling is capable of detecting rapid changes in the atmospheric wind field and demonstrates excellent consistency in spectrum width and skewness, both aligning well with the simulated results. The differences in CNR and radial wind velocity are shown in Fig. 4. Influenced by turbulence, CNR exhibits significant enhancement, while radial wind velocity fluctuates. In the near field, the mean CNR difference is 3.28 dB with a standard deviation of 0.26 dB, whereas in the far field, it is 1.35 dB with a standard deviation of 0.78 dB. The one-bit sampling CDWL shows a slight CNR loss in the near field, but it does not affect atmospheric detection. The mean differences in radial wind velocity in the near fields are -0.08 m/s and -0.07 m/s, with standard deviations of 0.57 m/s and 0.86 m/s, respectively.

Conclusions We propose a new one-bit sampling CDWL, demonstrating its advantages through simulation and comparison with a 14 bit sampling CDWL. This new one-bit sampling CDWL reduces the raw data volume to 1/16 and the power consumption of the sampling circuit to 2/9. Moreover, even under low CNR conditions, the returned signals can still be accurately distinguished. These findings reveal that the one-bit sampling can maintain the performance of CDWL, while effectively reducing the raw data volume, showcasing its potential for CDWL applications.

Key words lidar; atmospheric optics; aerosol detection; optoelectronics