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Abstract: The impact of range resolution on the accuracy of wind lidar cannot be ignored,
which is quantitatively evaluated using virtual lidar. This study conducts a comparative analysis
of three virtual lidar generation methods: the direct averaging method, the energy weighting
method, and the time-domain analysis method. The error assessment between the wind retrieved
by virtual lidar and the reference wind is carried out. Results show that insufficient range
resolution can cause underestimation and misalignment of wind speed extremes. Moreover,
there are differences in the retrieval results generated by the three virtual lidar methods. Based
on these findings, a dimensionless parameter is proposed to decouple the relationship between
range resolution and wind field scale. The fitting relationships between this parameter and error
metrics are established, enabling the selection of the optimal virtual lidar generation method
for different scenarios. Finally, wind speed errors and image similarity metrics are combined
to comprehensively evaluate the impact of range resolutions on detection of typical building
wake flow. This research provides a vital foundation for evaluating the wind field detection
performance of coherent Doppler wind lidar, which remains applicable to direct detection wind
lidar.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Coherent Doppler wind lidar (CDWL), due to its high spatiotemporal resolution, high precision,
and extensive detection range, has been widely applied in fields such as aviation safety [1–4],
wind energy development [5,6], and atmospheric pollution [7,8]. In recent years, there has been
continuous progress in the hardware systems [9,10] and inversion algorithms [11] of CDWL.
However, many issues remain, particularly the issue of insufficient range resolution.

The mutual restriction between range resolution and detection distance makes it difficult to
achieve an effective combination of fine-scale and wide-range detection. Insufficient range
resolution poses significant challenges when attempting to detect the fine structure of small-scale
wind fields [12]. When the range resolution is significantly lower than the wind field scale, it can
lead to an underestimation of wind shear, thereby affecting the accuracy and reliability of the
detection results. Currently, wind field detection error assessment of lidar primarily is based on
the analysis of lidar signal-to-noise ratio (SNR) [13,14] and inversion algorithms [15,16]. The
limitation of this assessment method is that it does not fully consider the impact of insufficient
range resolution on the measurement results, leading to inaccurate error assessment. Therefore,
the specific impact of range resolution on the detection performance of wind field at different
scales is still an urgent issue that needs to be addressed. However, the system design, purchase
and field experiment cost of CDWL are relatively high. The virtual lidar is expected to solve this
problem.

The virtual wind lidar or lidar simulation technology offers an economical and effective
solution to these issues. Currently, virtual wind lidar plays a crucial role in lidar system design,
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experimental scheme optimization, and algorithm advancement [17–19]. It enables the testing and
verification of various system configurations and scanning strategies in a simulated environment,
aiding in the optimization of real lidar performance and applications, significantly reducing
research costs and risks [20,21]. For example, virtual lidar provides comprehensive, customized
solutions and services for complex wind measurement needs such as complex terrain wind fields,
wind turbine wakes, offshore remote virtual wind towers, and three-dimensional distribution
of atmospheric pollutants [22,23]. Additionally, virtual lidar can effectively complement and
enhance the datasets for AI models related to CDWL [24].

The commonly used methods for generating virtual wind lidar include weighted average
method [25], frequency-domain analysis method [20], and time-domain analysis method [26],
each with its own advantages and disadvantages. While the weighted average method is simple to
implement and fast in computation, it does not fully consider the lidar hardware parameters, the
stochastic nature of atmospheric phase, and the process of lidar signal acquisition and processing,
leading to discrepancies between the detection results of virtual lidar and real lidar. On the other
hand, the frequency-domain analysis method and time-domain analysis method, although more
accurate and reliable, have a significantly increased computational load. As a result, simulation
speed decreases substantially, making them unsuitable for applications that require high real-time
performance.

This study aims to explore the impact of lidar range resolutions on wind field detection
performance using virtual lidar. The structure of the paper is as follows: Section 2 introduces
three virtual lidar generation methods. Section 3 introduces a dimensionless parameter for
assessing wind speed errors across various range resolutions and wind scales, and combines
image similarity metrics to analyze detection performance of building wake flow. Finally, a
conclusion is drawn in Section 4.

2. Methods

This paper investigates three virtual lidar generation methods: the direct averaging method, the
energy weighting method, and the time-domain analysis method. In the direct averaging method,
the retrieved wind speed at the radial position of each range gate va

i is obtained by calculating the
arithmetic mean of the reference wind speed within the range of each range gate. The expression
is as follows:

va
i =

1
m2 − m1

∑︂m2

j=m1
vr

j (1)

where i represents the serial number of range gates within the detection range at the lidar range
resolution interval. m1 and m2 represent the serial numbers of the reference wind speed at the start
and end points of range gate i, respectively. vr

j represents the reference wind speed at the radial
position rj, which is derived from actual measurement or theoretical value. The atmospheric
wind field is a complex nonlinear system influenced by a variety of factors, characterized by
inhomogeneity and abrupt changes, which makes accurate modeling of the atmospheric wind field
difficult. However, based on the statistical laws and Fourier analysis methods of the atmospheric
wind field, the wind can be regarded as a waveform composed of sinusoidal wind speeds with
different amplitudes and wavelengths [27]. Based on this assumption, this study obtains the
radial wind speed data of the atmospheric wind field using the ideal sine wind speed model,
which is expressed as:

vr
j = A · sin(

2π
L

· rj) (2)

where j represents the serial number separated by the slice thickness ∆r within the detection
range, A denotes the wind speed amplitude, and L represents the reference wind speed wavelength,
reflecting the characteristic scale of wind field. In practical applications, the characteristic scale
is related to factors like underlying surface properties and meteorological conditions.
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The energy weighting method considers the relationship between the range resolution of
CDWL and the full width at half maximum (FWHM) of the emitted laser pulse. Assuming a
Gaussian shape for the laser pulse, a power simulation model for the lidar pulse signal at each
range gate is established. The expression is as follows:

Pi =
2
√

ln 2
√
π · ∆R

exp(−4 ln 2(
rj − Ri

∆R
)2) (3)

where ∆R represents the lidar range resolution. Based on the power simulation results from
Eq. (3), the retrieved wind speed at the radial position of each range gate ve

i is obtained by the
energy-weighted average of the reference wind speed within the range of each range gate. The
expression is as follows:

ve
i =

∑︁m4
j=m3

vr
j Pi∑︁m4

j=m3
Pi

(4)

The time-domain analysis method divides the aerosol scatterers within the detection range
into slices of equal thickness along the light beam propagation axis. The aerosol particles within
each slice have the same speed and direction of motion, and the scattering coefficient is constant.
Due to the random distribution and irregularity of the scatterers, the phase and amplitude of the
scattered light waves change. When these scattered light waves coherently superimpose in space,
they form a random pattern of fine bright and dark spots on the receiving surface, known as
speckle phenomenon [28]. To simulate a more realistic atmospheric echo signal, this method
takes the speckle phenomenon into account, thereby obtaining the heterodyne current signals
for each layer. By stacking and splicing the echo signals of each layer in time sequence, the
time-domain model of the echo signals within the effective detection range is formed [26]:

i(t) = 2ℜ exp(j2πvMtj)×∑︁
N aj[ηsPLOPT (tj − 2rj/c)T2(rj)β(rj)∆r(Ar/r2

j )]
1/2 exp(−j2kvr

j tj)
(5)

where i(t) represents the heterodyne current at time t within the range gate, vM is the AOM
frequency shift, tj is the sampling time of the atmospheric wind field node j, PLO is the local
oscillator light power, ηs is the total optical efficiency of the system, c is the speed of light, Ar
is the receiving area of the telescope, k is the wave number of the laser emitted by the virtual
wind measuring lidar, and aj is the random factor corresponding to the speckle effect of the
echo signal. N is the total number of nodes between two atmospheric wind field nodes within
the detection range with the slice thickness ∆r. T(rj) and β(rj) represent the transmittance and
backscattering coefficient at the radial position rj, respectively. Subsequently, by performing
a Fast Fourier Transform (FFT) on the heterodyne current, the power spectrum within each
range gate is obtained. The retrieved wind speed at the radial position of each range gate can
be determined by spectrum analysis. The pulse accumulation number is set to 100 to balance
computational complexity and signal quality [29]. The specific lidar simulation parameters are
listed in Table 1.

3. Results and discussion

3.1. Comparison of the three virtual lidar generation methods

The measured data from a 0.9-m high-resolution CDWL is adopted as the reference wind
speed. The 0.9-m high-resolution CDWL employed pseudorandom phase modulation (PRM)
technology to achieve sub-meter resolution, which was validated through comparative analysis
with conventional pulsed CDWL. It was proved to be able to capture the meter-scale perturbation
wind from an electric fan in the experiment [30]. The results of the direct averaging method,
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the energy weighting method, and the time-domain analysis method are compared with the
measured data in Fig. 1. The real atmospheric wind field is characterized by irregularities and
stochastic variations over time, primarily due to atmospheric turbulence and convective activities.
These characteristics result in fluctuations in the wind field across a spectrum of frequencies and
intensities.

Table 1. The lidar simulation parameters

Parameter Value Unit

Laser wavelength 1550 nm

Transmitted pulse energy 100 µJ

Sampling frequency 250 MHz

Telescope diameter 80 mm

Local oscillator light power 0.1 mW

Backscattering coefficient 8 × 10−6 m−1sr−1

Atmospheric transmittance 0.8 -

Fig. 1. Wind field retrieval results of virtual lidar with various range resolutions using three
methods. The reference wind speed is derived from 0.9 m range resolution CDWL data.

The wind speeds retrieved by the direct averaging method and the energy weighting method
are highly consistent, when compared to the wind field retrieval results of the three virtual
lidar generation methods. This consistency stems from the fact that both methods employ the
weighted average approach. The subtle difference is due to the difference of weighting factors.
These weighted average approaches reduce the impact of random fluctuations in the wind field,
resulting a smoother result compared to the reference wind speed. These methods are relatively
faster in calculation and closer to the reference wind field compared to the time-domain analysis
method. However, they fail to fully consider the lidar hardware parameters, the stochastic nature
of atmospheric phase, and the process of lidar signal acquisition and processing. As a result,
there is a discrepancy between the results of virtual lidar retrieval and real lidar detection, leading
to lower reliability. In contrast, the time-domain analysis method is more reliable in reflecting
the real lidar detection performance because it more thoroughly considers the various aspects
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of real lidar detection. However, this method leads to a significant increase in computational
load, which substantially slows down the simulation speed and results in relatively poor real-time
performance.

In addition, a higher range resolution is superior in capturing the nuanced dynamics of the
wind field with greater precision and sensitivity, as shown in Fig. 1(a). In contrast, lower
range resolution attenuates the responsiveness to rapid changes in wind speed. This can lead to
underestimation and misalignment of wind speed extremes, as shown in Fig. 1(d). These insights
underscore the pivotal importance of range resolution in ensuring the precision and dependability
of wind speed measurements.

To further investigate the relationship between range resolution and wind field scale, the
sinusoidal reference wind field is applied. Figure 2 shows the retrieval results of three virtual
lidar generation methods for various wind characteristic scales at a range resolution of 30 m. In
Fig. 2(a), when the wind field scale is twice the range resolution, the wind field retrieval results
of the direct averaging method and the energy weighting method tend to zero, and the wind
speed extremes cannot be captured. Although the time-domain analysis method can capture the
extremes, their position does not match those of the reference wind speed. In Fig. 2(b), when the
wind field scale is three times the range resolution, the wind speed retrieved by the three methods
matches the reference wind speed. However, the wind speed extremes are slightly underestimated
and misaligned. In Fig. 2(c) and (d), when the wind field scale is 8 times and 16 times of the
range resolution respectively, the wind speed retrieved by the three methods is highly consistent
with the reference wind speed. This indicates that a 30-m range resolution can effectively detect
such structures.

Fig. 2. Wind field retrieval results of virtual lidar with various characteristic scales using
three methods. The range resolution is 30 m.

3.2. Error assessment of wind field retrieval

Both the range resolution of lidar and the scale of the wind field affect lidar detection performance.
To quantify how different range resolutions impact the detection performance of various wind
field scales, three error metrics are employed to assess the wind field retrieval effectiveness.
These metrics include Root Mean Square Error (RMSE), Mean Relative Error (MRE), and Mean
Absolute Error (MAE). These metrics compare the wind speeds retrieved by the virtual lidar
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with the reference wind speeds. RMSE is sensitive to large errors. A higher RMSE indicates
greater fluctuation in the retrieval errors. MRE is suitable for comparing data of different scales,
as it quantifies the relative deviation ratio of retrieved values to references. MAE does not overly
amplify the impact of outliers, thus providing a balanced assessment of overall error. A single
metric or combination can be selected according to the needs of the actual application scenarios.

Figure 3 illustrates the error assessment results of the virtual lidar using the time-domain
analysis method. Lower lidar range resolutions and shorter characteristic scales of reference
wind speeds are associated with higher errors. This increase in errors leads to a decreased ability
to accurately capture the wind field. The RMSE exceeds 20 m/s when the range resolution is
below 40 m at wind characteristic scale of 60 m. When the range resolution is improved to
approximately 6 m, further increases in range resolution do not reduce errors. In fact, the figure
shows that excessively high range resolution can slightly increase error, despite the general trend
that higher resolution typically leads to smaller errors. It is because when the range resolution is
too high, it leads to a significant increase in the spectral width of the signal. Insufficient pulse
accumulation in the simulation also increases the errors of the results. These factors can adversely
affect the accuracy of the retrieval results. This is also one of the challenges in developing
single-pulse high-resolution lidar systems.

Fig. 3. Error distribution of wind speed retrieved by virtual lidar using the time-domain
analysis method: (a) RMSE, (b) MRE, and (c) MAE. Range resolution varies from 3 m to
60 m. Characteristic scale ranges from 60 m to 480 m.

Wind field detection performance cannot be determined solely by the range resolution of the
lidar. In Fig. 3(a), at a range resolution of 30 m, the RMSE is 0.8 m/s for a reference wind
characteristic scale of 300 m. Upon increasing the characteristic scale to 60 m, the RMSE
escalates to 8.1 m/s. To decouple the relationship between range resolution and wind scale, a
dimensionless parameter γ is proposed. This parameter is defined as the ratio of the characteristic
scale of reference wind speed to lidar range resolution. The fitting relationships between this
parameter and error metrics are established based on the three virtual lidar generation methods,
as shown in Fig. 4.

As the parameter increases, the error values decrease exponentially. For γ above 9.1, the
RMSE of the three methods is less than 1 m/s, as shown in Fig. 4(a). According to Fig. 4(b),
exceeding a γ value of 10.2 results in an MRE below 0.2 for the three methods. For γ exceeding
7.5, the MAE of the three methods is under 1 m/s, as depicted in Fig. 4(c). In this case, the
range resolution does not cause large errors, thereby enabling the lidar to accurately retrieve wind
speed. Additionally, when the error curves of the direct average method and the energy weighted
method are close to those of the time-domain analysis method, the three methods have the same
performance in lidar detection simulations. Therefore, the direct averaging method or the energy
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Fig. 4. The error fitting curves between RMSE, MRE, MAE and the γ based on three virtual
lidar generation methods. The raw data points are the errors of wind speed retrieved by
time-domain analysis method.

weighting method can replace the time-domain analysis method to generate virtual lidar. It can
not only reduce the computational load and improve real-time performance but also ensure the
reliability of virtual lidar retrieval.

When γ is small, the errors of the three virtual lidar generation methods are all large. The wind
speed retrieved by the virtual lidar shows a significant difference from the reference wind speed.
The gaps between the error fitting values of the three virtual lidar generation methods are widening.
It is worth considering whether the direct averaging method or the energy weighting method can
effectively simulate real lidar detection. Setting a threshold based on the actual scenario can
address this issue. When the gap of error fitting values between the time-domain analysis method
and the other methods exceeds the preset threshold, only the time-domain analysis method can be
used. Conversely, more computationally efficient methods can be employed instead.

3.3. Optimization of the time-domain analysis method

As revealed by the analysis of Sec. 3.2, only the time-domain method can accurately simulate the
detection performance of real lidar at a small γ. However, this method suffers large computational
load, making it essential to optimize its computational efficiency. Based on Eq. (5), apart from
the influence of computer hardware performance and algorithm implementation efficiency, the
slice thickness ∆r is a key factor. The augmentation of the slice thickness leads to a reduction in
matrix size, thereby enhancing computational efficiency. Therefore, an analysis is conducted on
how varying slice thickness affect the accuracy of wind field retrieval and the calculation time, as
show in Fig. 5. The wind field scale is set to 240 m for different range resolutions.

Figure 5 shows how time and RMSE change with slice thickness at two range resolutions
using a wind characteristic scale of 240 m. The RMSE compares the wind speed retrieved
by virtual lidar with a slice thickness of 0.3 m to that with other slice thicknesses, under the
same characteristic scale of reference wind speed. Time decreases rapidly as the slice thickness
increases, then levels off. At a range resolution of 30 m, the value of γ corresponds to 8.
Increasing the slice thickness does not substantially affect the error of wind speed retrieval, as
shown in Fig. 5(a). It can expand the slice thickness without compromising the accuracy of wind
speed retrieval, which leads to a significant reduction in calculation time and an improvement
in real-time capabilities. However, at a range resolution of 60 m, the value of γ corresponds to
4. Increase in slice thickness can result in a considerable rise in wind speed retrieval error, as
shown in Fig. 5(b). It requires more caution to avoid significant accuracy loss. For example, if
RMSE does not exceed 3 m/s, the slice thickness should be controlled within 4 m in the case of
Fig. 5(b). Incidentally, the relationship between RMSE and slice thickness is also influenced
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Fig. 5. The RMSE and calculation time of virtual lidar using the time-domain analysis
method with a range resolution of 30 m and 60 m respectively. The characteristic scale of
reference wind speed is set to 240 m. Slice thickness varies from 0.3 m to one third of the
range resolution. The solid line represents RMSE. The dashed line represents the consuming
time required for the computer to complete simulation calculation.

by the characteristic scale of the reference wind speed. Increasing slice thickness may not raise
error much when characteristic scale is sufficiently large at 60 m range resolution.

3.4. Application of typical building wake flow

A typical building wake flow is constructed to evaluate the capture capability of lidar with different
range resolutions for complex wind fields. The size of a single urban building is generally on
the order of tens of meters. In the field of building aerodynamics, a square-shaped model is
commonly used to study wind field characteristics. Therefore, a square-shaped building model
with dimensions of 30 m× 30 m is constructed. The inflow velocity is set to a uniform westerly
wind of 10 m/s. Through computational fluid dynamics (CFD) technology, the raw wind field is
established with a grid interval of 0.18 m. A virtual lidar is placed at the air wake region of the
building. While two-dimensional (2-D) wind vector field retrieval offers richer information, it
introduces extra retrieval errors. Notably, errors from range resolution will amplify the extra
errors introduced by the 2-D retrieval algorithm. Low range resolution leads to an increase in
radial errors and a degradation in wind texture capture, thereby compounding wind direction
inaccuracies. It’s hard to distinguish errors from range resolution and those from different 2-D
retrieval algorithms. Therefore, this application focuses on the impact of range resolutions on
radial wind velocity. Fortunately, radial wind speed is the projection of wind vectors onto beam
directions, which contains vector information to some extent.

Figure 6(a) illustrates the wind speed field in the air wake region of the building. When the
airflow passes over the building, vortices alternately form and shed on both sides due to the
building’s blocking effect. This leads to abrupt changes and instability in the wind speed. The
size of the vortex shedding is related to the incoming flow velocity, and the building’s windward
width. The precise capture of these fine-scale structures is crucial for alerting wind shear and
optimizing low-altitude flight paths, with the rapid development of low-altitude aviation economy
[31–34].

Figure 6(b) shows the result of projecting the raw wind field onto the radial wind field, which
is set as reference wind field. Figures 6(c)-(e) depict the retrieved radial wind field of virtual lidar
at different range resolutions with time-domain analysis method. The retrieval range is within
500 m around the virtual lidar. Angular scan increment is 0.25° to eliminate the influence of
tangential resolution on the results.
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Fig. 6. (a) shows the raw wind field of a typical building wake flow. (b) shows the radial
wind field centered on the virtual lidar. (c)-(e) show wind field retrieval results of virtual
wind lidar with different range resolutions using time-domain analysis method. The range
resolutions are 6 m, 15 m, and 30 m, respectively.

In the black circular area of raw wind field, the sudden shifts in color blocks of radial wind
speed indicate the presence of variable vortices. The wind scale of this area is approximately 60
m, as shown in Fig. 6(b). The range resolution of 6 m corresponds to the γ of 10. The abrupt
changes in wind speed can be well depicted, including the magnitudes and locations of these
changes, as shown in Fig. 6(c). As the range resolution is decreased to 15 m, the corresponding
value of γ becomes 4. The magnitudes of the abrupt changes of retrieved wind speed decrease,
and a certain degree of misalignment occurs, as illustrated in Fig. 6(d). The range resolution of
30 m corresponds to the γ of 2. These abrupt wind changes in the circle area cannot be effectively
retrieved, as shown in Fig. 6(e). The lower range resolution of lidar, the fewer details of the wind
field it can detect, which leads a significant decrease in the accuracy of wind speed retrieval.

To comprehensively evaluate the retrieval effects of virtual lidar under three different range
resolutions, the evaluation is carried out from dual perspectives. RMSE and Peak-to-Peak
Relative Error (PPRE) are adopted to evaluate the accuracy of wind speed retrieval. PPRE
provides a measure of peak wind speed capture capability, which is helpful to evaluate the capture
ability of wind shear intensity in practical applications. The Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM), Visual Information Fidelity (VIF) are adopted to evaluate
the ability to depict the textural features of wind field [24,35]. PSNR quantifies the absolute
accuracy of pixel values, directly reflecting wind speed deviations at each grid point. A high
PSNR suggests that the wind speed at each point in the retrieved wind field closely matches the
reference values. SSIM assesses similarity in luminance, contrast, and structural patterns within
local windows. A high SSIM implies a high degree of similarity in the structural characteristics
of local zones relative to the reference values. VIF models the human visual system, quantifying
perceptually retained details. A VIF approaching 1 indicates the retrieved wind field retains rich,
visually discernible details, such as small vortices and complex turbulent patterns. The primary
metric should align with the specific wind field evaluation objective.

The values of each metrics under different range resolutions are shown in Table 2. The RMSE
increases from 1.01 m/s to 2.89 m/s, signifying a rise in the error of wind speed retrieval. Due
to the relatively stable wind speed in most scanning areas, the overall RMSE is not very large.
However, for vortex shedding regions, the wind field scale is small and the peak wind speed is
large. These resolutions not fully capture peak values, resulting in a greater error in vortices
region. Specifically, the PPRE escalates from 13.26% to 53.56%, indicating a decline in the
ability to capture peak wind speed. Despite PPRE reaches 25.49% at range resolution of 15 m,
the vortex shedding structure can still be identified in the image. The image similarity metrics
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can evaluate the impact of different range resolution on vortex shedding structures. A discernible
trend of degradation in image similarity is observed with the decrease in range resolution. This
is demonstrated by a decline in PSNR from 28.99 dB to 23.88 dB, a reduction in VIF from 0.53
to 0.19, and the SSIM which drops from 0.97 to 0.93. Furthermore, the sensitivity of image
similarity metrics in key regions can be improved through region segmentation methods.

Table 2. The values of each evaluation metric under different range resolutions

Range resolution (m) RMSE (m/s) PPRE PSNR (dB) VIF SSIM

6 1.01 13.26% 28.99 0.53 0.97

15 1.86 25.49% 25.32 0.42 0.95

30 2.89 53.56% 23.88 0.19 0.93

For practical lidar systems, indiscriminately enhancing the range resolution can lead to a
substantial increase in hardware costs and technical complexity. The high-resolution lidar also
faces pulse crosstalk, spectrum broadening, longer accumulation time and poor stability of pulse
coding system. In extreme scenarios, even with the improved range resolution, the lidar may
still fail to accurately capture the magnitude of peak wind speeds. However, based on image
similarity metrics, an optimal range resolution can be identified. This ensures that the lidar can
capture the textural features of the wind field, which is particularly useful for identifying wind
shear. Achieving this balance is crucial for optimizing lidar system performance, as it involves
finding the optimal trade-off among range resolution, cost, and detection capability.

4. Conclusion

This study analyzes the impact of range resolutions on wind field detection performance using
virtual lidar. Insufficient range resolution can cause underestimation and misalignment of peak
wind speeds. A dimensionless parameter γ is proposed to decouple the relationship between
range resolution and wind field scale. Results indicate that when γ exceeds 9, all the three virtual
lidar generation methods perform similarly, allowing for the use of computationally efficient
averaging methods. Conversely, when γ is small, the averaging methods tend to underestimate
the wind speed, requiring more accurate time-domain analysis method. By establishing the fitting
relationship between γ and error metrics, this study provides a scientific basis for selecting the
best virtual lidar generation method for different scenarios. To solve the high computational
load associated with the time-domain analysis method, this study optimizes computational
efficiency by adjusting the slice thickness. In the application of the typical building wake flow, the
performance of different range resolutions to capture vortex structures is evaluated. Additionally,
this study proposes an approach based on image similarity metrics to assess the capability of
different range resolutions in capturing wind field texture structures. It offers a new perspective
for analyzing the impact of range resolutions on wind shear region detection.

In practical applications, the implementation of high-resolution lidar is often constrained by
significant technical challenges. Therefore, it is crucial to balance the lidar’s ability to capture
wind field texture structures and its capacity to resolve real wind speeds. This balance is essential
for selecting an optimal range resolution that maximizes detection performance while minimizing
requirements of lidar hardware. This study provides a basis for lidar error assessment and range
resolution selection. It offers valuable references for the application of lidar in low-altitude
aviation economy, wind energy development, and civil aviation safety. This study primarily
focuses on the wind field detection performance of single-pulse CDWL. The researches methods
and conclusions remain applicable to direct detection wind lidar. The only difference lies in
their theory of generating virtual lidar. Future work will concentrate on the simulation of
high-resolution lidar systems based on complex pulse coding and modulation techniques.
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